Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 31(8): 931-938, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217626

RESUMO

Spinal neurofibromatosis (SNF) is a form of neurofibromatosis type 1 (NF1) characterized by bilateral neurofibromas involving all spinal roots. The pathogenic mechanisms determining the SNF form are currently unknown. To verify the presence of genetic variants possibly related to SNF or classic NF1, we studied 106 sporadic NF1 and 75 SNF patients using an NGS panel of 286 genes encoding RAS pathway effectors and neurofibromin interactors and evaluated the expression of syndecans (SDC1, SDC2, SDC3, SDC4), the NF1 3' tertile interactors, by quantitative real-time PCR. We previously identified 75 and 106 NF1 variants in SNF and NF1 cohorts, respectively. The analysis of the distribution of pathogenic NF1 variants in the three NF1 tertiles showed a significantly higher prevalence of NF1 3' tertile mutations in SNF than in the NF1 cohort. We hypothesized a potential pathogenic significance of the 3' tertile NF1 variants in SNF. The analysis of syndecan expression on PBMCs RNAs from 16 SNF, 16 classic NF1 patients and 16 healthy controls showed that the expression levels of SDC2 and SDC3 were higher in SNF and NF1 patients than in controls; moreover, SDC2, SDC3 and SDC4 were significantly over expressed in patients mutated in the 3' tertile compared to controls. Two different mutational NF1 spectra seem to characterize SNF and classic NF1, suggesting a pathogenic role of NF1 3' tertile and its interactors, syndecans, in SNF. Our study, providing new insights on a possible role of neurofibromin C-terminal in SNF, could address effective personalized patient management and treatments.


Assuntos
Neurofibromatoses , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neurofibromina 1/genética , Mutação , Sindecanas/genética , Genes da Neurofibromatose 1
2.
J Biomed Biotechnol ; 2011: 370195, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21318170

RESUMO

The importance of X chromosome in the aetiology of premature ovarian failure (POF) is well-known but in many cases POF still remains idiopathic. Chromosome aneuploidy increase is a physiological phenomenon related to aging, but the role of low-level sex chromosome mosaicism in ovarian function is still undiscovered. Standard cytogenetic analysis was carried out in a total of 269 patients affected by POF: 27 chromosomal abnormalities were identified, including X chromosome and autosomal structural and numerical abnormalities. In 47 patients with 46,XX karyotype we performed interphase FISH using X alpha-satellite probe in order to identify X chromosome mosaicism rate. Aneuploidy rate in the patient group was significantly higher than the general population group. These findings underline the importance of X chromosome in the aetiology of POF and highlight the potential role of low-level sex chromosome mosaicism in ovarian aging that may lead to a premature onset of menopause.


Assuntos
Análise Citogenética/métodos , Insuficiência Ovariana Primária/genética , Adulto , Envelhecimento/genética , Núcleo Celular/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 18/genética , Cromossomos Humanos X/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Interfase , Pessoa de Meia-Idade , Monossomia/genética , Insuficiência Ovariana Primária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...